Homogeneous Einstein metrics on non-Kähler C-spaces

نویسندگان

چکیده

Abstract We study homogeneous Einstein metrics on indecomposable non-Kahler C-spaces, i.e. even-dimensional torus bundles M = G ∕ H with rank > over flag manifolds F K of a compact simple Lie group . Based the theory painted Dynkin diagrams we present classification such spaces. Next focus family l , m n ≔ SU ( + ) × ∈ Z and examine several its geometric properties. show that invariant are not diagonal beyond certain exceptions their parametrization depends six real parameters. By using an Riemannian metric, compute non-diagonal part Ricci tensor explicitly algebraic system equation. For general positive integers by applying mapping degree provide existence at least one -invariant metric two 2 for obtain four 3 also isometry problem these metrics, while plethora cases induced fixed numerical form all non-isometric metrics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Para - Kähler Einstein

A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...

متن کامل

Some New Homogeneous Einstein Metrics on Symmetric Spaces

We classify homogeneous Einstein metrics on compact irreducible symmetric spaces. In particular, we consider symmetric spaces with rank(M) > 1, not isometric to a compact Lie group. Whenever there exists a closed proper subgroup G of Isom(M) acting transitively on M we nd all G-homogeneous (non-symmetric) Einstein metrics on M .

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

Homogeneous Einstein–weyl Structures on Symmetric Spaces

In this paper we examine homogeneous Einstein–Weyl structures and classify them on compact irreducible symmetric spaces. We find that the invariant Einstein–Weyl equation is very restrictive: Einstein–Weyl structures occur only on those spaces for which the isotropy representation has a trivial component, for example, the total space of a circle bundle.

متن کامل

Kähler Metrics on G

We study G-invariant Kähler metrics on G from the Hamiltonian point of view. As an application we show that there exist G × G-invariant Ricci-flat Kähler metrics on G for any compact semisimple Lie group G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2020.103996